

BinExp Corner:
Intro to Reverse Engineering

48 8d 3d 95 01 00 00
B8 00 00 00 00
E8 d7 fd ff ff

RDI, [s_Enter_the_code_>>>_00100a64]
EAX, 0x0
<EXTERNAL>::printf

printf(“Enter the code\n>>> “);

Intro
What this talk about

● Beginner’s look into reversing binaries
● Dynamic vs Static Analysis
● Some tools
● Memory Structure
● x86-x64 Architecture and Assembly
● Intro to Disassemblers and Debuggers
● Some intro level examples
● Lots of Links and Resources

What it definitely is NOT
● In depth look into all things reversing and exploitation
● An intro to malware analysis

● Do NOT immediately apply this to malware – you’ll get infected
● There’s a lot we won’t cover - like setting up a secure environment

Static vs Dynamic Analysis
Static

● Analysis of an application by examining the code and application
artifacts without executing it

● e.g.: file, strings, disassembly...

Dynamic
● Analysis of an application during runtime
● e.g.: Looking at memory or CPU registers in a debugger, using strace to see what

system calls are invoked by the application ...

First Step
The file and strings commands
file

● Based on a number of tests it tells you:
● What kind of file you’re looking at
● What CPU architecture it was compiled for
● Can tell you what language it was written in

● Do NOT skip this step.
● How you analyze a .NET executable can be very different from how a C

binary or even golang. Research what you’re looking at.

Example from the THM room:
CC: Radare2

First Step
The file and strings commands
file

● If it looks wrong or broken it means it failed some of its tests.

● Could mean someone purposefully manipulated the ‘magic numbers’ in the
file headers, or some other types of obfuscation.

● You can often fix this with educated guesses via hexeditor
● Requires some research (googling) or knowing what these ‘magic numbers’

typically look like

● Things can go wrong:

Example from the THM room:
0x41haz

First Step
The file and strings commands
strings
● Prints out any sequence of printable

characters that is at least 4 characters long
(unless told otherwise with -n)

● Some insight into what the program does
without actually executing it.

● Can help figure out what the executable is
when the file command is not helping

● May sometimes leak valuable strings
(passwords, information on the type of
encoding or cryptography that is used on a
binary)

Example from the THM room:
0x41haz

First Step
The file and strings commands
Strings – gone wrong?
It’s just statically linked golang

Example from the THM room:
Binary Heaven

First Step
The file and strings commands

● file and strings are both part of very basic static analysis

● In windows PE it’s also useful to learn about PE headers
– which we can analyze with: pecheck

● https://github.com/DidierStevens/DidierStevensSuite

https://github.com/DidierStevens/DidierStevensSuite

First Step
The ldd command

● Lists dependencies on the ELF header of a binary

Dynamic Analysis
The strace and ltrace commands
strace

● Useful if the binary interacts with the linux kernel

● Executes the binary until it exits.

● Records system calls made by the process and the signals
which are received by the process.

Dynamic Analysis
The strace and ltrace commands
strace

Example from the THM room:
CC: Radare2

Dynamic Analysis
The strace and ltrace commands
ltrace

● Similar to strace, but sometimes a bit more useful

● Will record every dynamic library called by the process

● Can also, like strace, record system calls (-S)

● With -i flag it’ll print the Instruction Pointer value when a
dynamic library is called

Dynamic Analysis
The strace and ltrace commands
ltrace

● strace and ltrace are both part of basic dynamic analysis

Dynamic Analysis
The strace and ltrace commands
ltrace

Memory, CPU and Assembly
● We’ve barely scratched the surface.

● To go deeper we need to learn more about Memory, the
CPU and its registers and Assembly.

● We’ll only look at it on a surface level – to do otherwise
would take way too long. Do your research.

Memory, CPU and Assembly

● Stack - Temporary data, methods and function
parameters live here (return addresses, local args and
variables)

● Heap - Memory that is allocated dynamically to a
process during runtime. (mostly managed by malloc())

● Process image:
● BSS - ‘block start by symbol’ - Essentially memory

space for uninitialized static variables
● Data - Global and Static variables.
● Text – Read only section with executable instructions,

constants and macros

Structure of a Process in Memory

Process Memory

text

data

bss

heap

stack

Memory, CPU and Assembly
CPU Registers
● Very small, very fast, data storage sites in the processor
● They have specific uses and vary depending on CPU architecture.

x86 accumulator (EAX):

EAX AXALAH
8 bits 8 bits

16 bits

32 bits

x64 accumulator (RAX):

RAX EAX
32 bits

64 bits

Memory, CPU and Assembly
CPU Registers
● There are quite a number of register with specific uses
● A few to remember:

x64 x86 function
RAX EAX Accumulator
RBX EBX Base (pointer to data)
RCX ECX Counter (shift/rotate and loops)
RDX EDX Data (arithmethic and I/O)
RSI ESI Source Index (point to source in stream ops)
RDI EDI Destination Index
RBP EBP Base Pointer (points to base of current stack frame)
RSP ESP Stack Pointer (points to top of the stack)
RIP EIP Instruction Pointer (address of next instruction)

Memory, CPU and Assembly
Flags
● There’s a specific register which depending on the architecture may be FLAGS (16bit),

EFLAGS (32bit) or RFLAGS (64bit)
● In this register each specific bit of the register is represents a boolean value (1 = true; 0 =

false)
● Combined, these represent the state of the processor and the result of operations

Some flags to remember:

CF – Carry Flag – set when the result of an operation is too large for the destination operand

ZF – Zero Flag – set when the result of an operation is equal to zero
(used in comparisons and jumps)

SF – Sign Flag – Set if the result of an operation is negative

TP – Trap Flag – Set when in debugger mode (doing step by step execution)

Memory, CPU and Assembly
Different Architectures
● Endianness

0xdeadbeef

0xde 0xad 0xbe 0xef – big-endian

0xef 0xbe 0xad 0xde – little-endian

● Typically not a problem for a program since it always uses the same endianness. It doesn’t
have to translate between the two.

● But we need to be aware of it, because we might want to directly extract values from
memory or edit memory/insert values.

Memory, CPU and Assembly
Different Architectures
● Calling Conventions

● Lucky for us x64 only has two – and an extension (example with int values)

● Unlucky for us, x86 has 5 common calling conventions
● __cdecl, __fastcall, COM, Native C++ (or thiscall) and Win32 or (__stdcall)
● But they preserve all registers except eax,ecx, edx and esp
● They return 32bit or smaller values in eax

https://en.wikipedia.org/wiki/X86_calling_conventions

 func1(int a, int b, int c, int d, int e, int f);
 // microsoft: a in RCX, b in RDX, c in R8, d in R9, f then e pushed on stack

 // AMD64: a in RDI, b in RSI, c in RDX, d in RCX, e in R8 and f in R9

Memory, CPU and Assembly
Assembly

Machine code (main)
(Low Level)

55
48 89 e5
48 8d 05 c0 0e 00 00
48 89 c7
e8 e4 fe ff ff
90
5d
C3
90

C Code
(High-Level)

#include <stdio.h>

void main(void)
{

puts(“Hello World”);

}

Assembly Code (main)
(Low-Level)

push rbp
mov rbp,rsp
lea rax,[rip+0xec0]
mov rdi,rax
call 1030 <puts@plt>
nop
pop rbp
ret
nop

Memory, CPU and Assembly
Assembly: Intel Syntax – There is also AT&T Syntax

instruction destination, source

mov ah, 0x01
● If we want to reference a location in memory we can place the address in bracket:

rip = 0x55555555555551a2

rip+0x2f16 = 0x55555555555580B8

[rip+0x2f16] = whatever the value is at memory address 0x55555555555580B8

mov rdi, QWORD [rip+0x2f16]

What is this?

Memory, CPU and Assembly
Assembly: bits bytes words and stuff

● How would we know how much to copy?

● In intel syntax we define it explicitly by using a keyword:

● Byte – 8 bits

● Word – 16 bits or 2 bytes

● Dword – 32 bits or 4 bytes

● Qword – 64 bits or 8 bytes

mov rdi, [rip+0x2f16]

mov rdi, QWORD [rip+0x2f16]

What about this?

Memory, CPU and Assembly
Assembly: Instructions

Data Transfer
-mov: move
-lea: load effective address
-xchg: exchange

Arithmetic
-mul/imul -sub
-div/idiv -inc
-add

Logic
-and -or
-xor -shl/shr
-rol/ror

Comparisons and Jumps
-cmp – updates flags based on src – dest
-jmp
-je (ZF ==1)
-jnz (ZF == 0)
-jnb (CF == 0)

Control Flow and Stack Operations (LIFO)
-call
-push
-pop
-ret

Guyinatuxedo’s Nightmare – CSAW!’18
https://github.com/guyinatuxedo/nightmare/blob/master/modules/03-beginner_r
e/csaw18_x86tour_pt1/stage1.asm

https://github.com/guyinatuxedo/nightmare/blob/master/modules/03-beginner_re/csaw18_x86tour_pt1/stage1.asm
https://github.com/guyinatuxedo/nightmare/blob/master/modules/03-beginner_re/csaw18_x86tour_pt1/stage1.asm

Memory, CPU and Assembly

Assembly – Conditionals and Loops
THM – Windows Reversing Intro room

https://guyinatuxedo.github.io/01-intro_assembly/reversing_assembly/index.html

THM – Windows x64 Assembly

Memory, CPU and Assembly
Stack Frames

Available
Stack Space

int num2
int num1

main() frame

ESP

Available
Stack Space

int num2
int num1

main() frame

int num3
return address

Func() Frame

ESP
Available

Stack Space

int num2
int num1

main() frame

ESP

func() call func()
returns

Tools And Examples
Disassemblers (and decompilers) – Static Analysis Tools!

● Hex Rays’ IDA
● Workhorse of the industry
● Very well established
● Excellent graph view
● Newer free version finally has a decompiler

● Ghidra
● Open source
● Developed by NSA
● Very extensible (python plugins etc)
● Very good decompiler

Tools And Examples
Ghidra – Quick Example… Stand by

Tools And Examples
Debuggers

● Windows:
● x32/x64dbg
● Immunity Debugger

● Linux:
● gdb (+ plugins like pwndbg or gef)
● Radare2
● rizin

Tools And Examples
Radare2 – Examples … Stand By

Sometimes it’s Easy
Example:

So let’s say we have the windows PE that we don’t know what it is:

We’re all happy so we throw it in Ghidra, it takes a while analyzing it.

We see some interesting functions, nice.. let’s see

Sometimes it’s Easy
Example:

We start looking at the decompiled code

We feel instantly lost

Why? Let’s get Back to the basics.

Sometimes it’s Easy
Example:

Let’s take a look with the file command

Oh, it’s a .Net compiled file. Are there tools for this?

YES dnSpy and ILSpy

Sometimes it’s Easy
Example:

Sometimes it’s Easy
Example:

We have the Source Code! It’s obfuscated, but we can even extract an IP
there.

Bottom Line, don’t skip steps. Do your research. The more you know about a
sample the more you can find out the right way to approach it.

Another example of this happening is when people try to decompile .dex files
in ghidra and suddenly being unable to understand what they are doing.

Instead they could use dex2jar or jadx to obtain a Jar out of that an analyze It
with a java decompiler like: http://java-decompiler.github.io/

Don’t skip steps. Do your research.

Final Word
Just the tip of the Iceberg

Lots to cover:
● Packers and Obfuscation
● Encryption
● Memory Protections
● Return Oriented Programming
● Other Architectures
● And much more…

https://omegavo.id

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

